
Semantics of Datalog for the Evidential Tool
Bus1

N. Shankar

Computer Science Laboratory
SRI International
Menlo Park, CA

May 8, 2018

1Joint work with Simon Cruanes (Ecole Polytechnique), Stijn Heymans (SRI AIC),
Ian Mason and Sam Owre (SRI CSL).



Motivation

An assurance case is “a documented body of evidence that
provides a convincing and valid argument that a specified set
of critical claims about a system’s properties are adequately
justified for a given application in a given environment.”
[Adelard]

From the FDA Draft Guidance document Total Product Life
Cycle: Infusion Pump - Premarket Notification [510(k)]
Submissions:
An assurance case is a formal method for demonstrating the validity

of a claim by providing a convincing argument together with

supporting evidence. It is a way to structure arguments to help

ensure that top-level claims are credible and supported. In an

assurance case, many arguments, with their supporting evidence,

may be grouped under one top- level claim. For a complex case,

there may be a complex web of arguments and sub-claims.

N. Shankar Datalog for ETB 2/21



Talk Outline

Motivation and design of an Evidential Tool Bus (ETB) for
building assurance arguments.

Datalog as a metalanguage for defining workflows and
building arguments.

Peculiarities of ETB Datalog

Semantics of ETB Datalog (omitted in the talk)

Abstract machine for the tabled evaluation of ETB Datalog
queries in a distributed setting

Termination check for detecting fully evaluated goals

Conclusions

N. Shankar Datalog for ETB 3/21



ETB Overview

The Evidential Tool Bus (ETB) is a distributed tool
integration framework for constructing and maintaining claims
supported by arguments based on evidence.

ETB provides the infrastructure for

Creating workflows that integrate multiple tools, e.g., static
analyzers, dynamic analyzers, satisfiability solvers, model
checkers, and theorem provers
Generating claims based on these workflows
Producing checkable evidence (e.g., files) supporting these
claims
Maintaining the evidence against changes to the inputs

ETB (https://github.com/SRI-CSL/ETB) is implemented
in Python 2.7 (but still somewhat buggy!).

This talk is preparation for a PVS formalization and code
generation for a new implementation (integrating Cyberlogic,
a logic of attestations).

N. Shankar Datalog for ETB 4/21

https://github.com/SRI-CSL/ETB


ETB Desiderata

ETB targets the production of claims supported by arguments
in which some of the sub-claims can be established by
external tools.

The three key design requirements for ETB are

Extensibility: New claim forms and rules of argumentation
New external tools (including human oracles)
New workflows that are defined by scripts
New clients and servers

Assurance: Explication of tools, artifacts, rules, and
assumptions on which the argument depends
Replay, revision, and rechecking of arguments

Semantic Neutrality: ETB makes no commitments to specific
tools, languages, or models

ETB is infrastructure for building and checking arguments,
and can be used to implement specific assurance
methodologies.

N. Shankar Datalog for ETB 5/21



ETB Architecture

Clients
Clients

Git Server Git Server

Git Server
Git Server

Link

Clients
Clients

Server Server

Server Server

N. Shankar Datalog for ETB 6/21



Datalog

Datalog is a fragment of Horn-clause logic programming first
introduced in the 1970s as a database query language.

It was realized that first-order logic could not represent
recursive queries like transitive closure:

ancestor(x, y) :- parent(x, y)

ancestor(x, y) :- parent(x, z), ancestor(z, y)

Much of the research focused on evaluation strategies for such
queries, e.g., semi-näıve, magic sets, tabled evaluation.

In the last decade, Datalog has come to be seen as a versatile
tool for many applications: data integration, provenance,
declarative networking, synchronous programming, runtime
monitors, program analysis, among others.

N. Shankar Datalog for ETB 7/21



Datalog as a Metalanguage

Atoms are of the form p(a1, . . . , an), where p is a predicate
and each ai is either a data object or a variable, e.g.,

models(Model ,Formula)
cnf (Formula,CNFFormula)

Data objects can be JSON terms, file handles (with SHA-1
hash), tool handles (e.g., BDDs), session handles.
A predicate p can either be

Interpreted by means of a tool invocation through wrappers,
e.g., yices.
Uninterpreted, i.e., defined by a Datalog program that is
evaluated locally, e.g., allsat.

An uninterpreted predicate is defined by clauses of the form
p(a1, . . . , an) :−Q, where Q is a list of atoms whose free
variables contain those of p(a1, . . . , an).

A query is an atom (possibly) with free variables, e.g.,
cnf (formula,CNFFormula).

A claim is a ground atom that is supported by a proof.

N. Shankar Datalog for ETB 8/21



An Example ETB Workflow: AllSAT

The defined predicates sat and unsat invoke the interpreted
yices predicate on the given file F.

sat(F, M) :- yices(F, S, M),

equal(S, ’sat’).

unsat(F) :- yices(F, S, M),

equal(S, ’unsat’).

allsat(F, Answers) :- sat(F, M),

negateModel(F, M, NewF),

allsat(NewF, T),

cons(M, T, Answers).

allsat(F, Answers) :- unsat(F),

nil(Answers).

Though allsat calls sat and unsat, the yices wrapper is only
executed once on the file F since the resulting claim is tabled.

N. Shankar Datalog for ETB 9/21



A Variant: AllSAT with a Yices Session

allsat(F, Answers) :- yicesStart(Session0),

yicesIncludeFile(Session0, F, Session1),

allsat_enum(Session1, Answers).

allsat_enum(Session, Answers) :-

yicesCheck(Session, Session1, Result),

allsat_iter(Session1, Result, Answers).

allsat_iter(Session, Result, Answers) :-

equal(Result, ’sat’),

yicesModel(Session, Model),

yicesAssertNegation(Session, Model, Session1),

allsat_enum(Session1, Answers1),

cons(Model, Answers1, Answers).

allsat_iter(Session, Result, Answers) :-

equal(Result, ’unsat’),

yicesClose(Session),

nil(Answers).

N. Shankar Datalog for ETB 10/21



ETB Datalog versus Datalog

Datalog as a database query language has intensional and
extensional predicates — ETB has uninterpreted and
interpreted predicates.

Interpreted predicates are similar to built-ins (which evaluate
ground atoms), but more general.

ETB only admits top-down left-to-right evaluation — no
bottom-up evaluation.

In ETB, Datalog is the metalanguage — sparse data, but
elaborate workflows.

In Datalog, the Herbrand universe is bounded, but in ETB
Datalog, it is unbounded.

ETB Datalog evaluation is distributed — uninterpreted
predicates are evaluated locally, and interpreted predicates
might be evaluated remotely.

No (stratified) negation — we only establish positive claims.

N. Shankar Datalog for ETB 11/21



What is an Interpreted Predicate?

Datalog has been extended with built-in predicates, but these
are usually evaluated when all arguments are grounded, e.g.,
< (x , y).
An interpreted predicate p(a1, . . . , an) is evaluated by a
wrapper.
The evaluation of a predicate p(a1, . . . , an) generates clauses
(lemmata) of the form

p(b11, . . . , b1n) : − Q1

...

p(bm1, . . . , bmn) : − Qm

For example, the evaluation of veryComposite(8, 3), can
generate

veryComposite(8, 3) : − composite(8),
composite(9),
composite(10).

The evaluation of interpreted predicates essentially generates
rule instances dynamically.

N. Shankar Datalog for ETB 12/21



The ETB Datalog Abstract Inference System

We can define a sound/complete inference system for query
processing.

A logical state consists of a pair G ; J with a set of
(normalized) goals G and a set of normalized clauses J.

Each goal in G is of the form ¬A and each clause in J is of
the form [B :− Q].

Initially, J is empty and G is the singleton {¬A}.
The inference system consists of inference rules that transform
the logical state.

N. Shankar Datalog for ETB 13/21



The ETB Datalog Inference System

Backchain:

G ;

J︷ ︸︸ ︷
[B :− A1, . . . ,An], J ′

G ,¬A1; [B :− A1, . . . ,An], J ′

Resolve:
G︷ ︸︸ ︷

¬A,G ′; J

G ;σ([B :− Q]), J
σ = mgu(A,B), [B :− Q] ∈ R

External:
¬A,G ′; J

G ; J ∪ E (A)
external atom A

Propagate:
G ; [B :− A,Q],A′, J ′

G ;σ([B :− Q]), J
σ(A) = A′

N. Shankar Datalog for ETB 14/21



ETB Abstract Machine

The abstract inference system simplifies the correctness
argument, but it can be inefficient without a strategy and
indexing.

We define an abstract machine for tabled evaluation whose
state consists of Goals and Clauses.

Goals Clauses

Resolve/External

Backchain

Propagate
Subclauses

Literal

Status

Claims

Parents

Children

Subgoal

Goal

Clause
Claim

NumSubclauses

Index

N. Shankar Datalog for ETB 15/21



A Datalog Example

C1 black(a, b)

C2 white(b, c)

C3 white(b, a)

C4 blackpath(X ,Y ) :− black(X ,Y )

C5 blackpath(X ,Y ) :− black(X ,Z ),whitepath(Z ,Y )

C6 whitepath(X ,Y ) :− white(X ,Y )

C7 whitepath(X ,Y ) :− white(X ,Z ), blackpath(Z ,Y )

N. Shankar Datalog for ETB 16/21



Example Derivation

−
b

p
(a

,Y
)

−
b

l(
a,

Z
)

−
w

p
(b

,Y
)

−
w

h
(b

,Z
)

c

b
p

(a
,Y

):
−

b
l(

a,
Y

)

a
b−

b
l(

c,
Z

)

w
p

(b
,a

)

w
p

(b
,c

)

b
p

(a
,a

)

b
p

(a
,c

)

b
p

(c
,Y

):
−

b
l(

c,
 Z

),
w

p
(Z

,Y
)

b
p

(c
,Y

):
−

b
l(

c,
Y

)

w
p

(b
,b

)

w
p

(b
,Y

):
−

b
p

(a
,Y

)

w
p

(b
,Y

):
−

b
p

(c
,Y

)

w
p

(b
,a

)

w
p

(b
,c

)

w
h

(b
,c

)

w
p

(b
,Y

):
−

w
h

(b
,Z

),
b

p
(Z

,Y
)

w
p

(b
,Y

):
−

w
h

(b
, 

Y
)

b
p

(a
,Y

):
−

w
p

(b
,Y

)

b
p

(a
,Y

):
−

b
l(

a,
Z

),
w

p
(Z

,Y
)

w
h

(b
,a

)

b
p

(a
,b

)

−
b

p
(c

,Y
)

b
l(

a,
 b

)

N. Shankar Datalog for ETB 17/21



Terminating Evaluation

How do we know when a goal or subgoal has been fully
evaluated?

Evaluation state is shared by a number of queries.

We add inference rules for termination checking that can be
interleaved with normal evaluation.

These rules track the dependencies between goals counting
claims propagated from subgoals to goals.

The algorithm exploits the order between goals to close off
goals g in which all transitive subgoals h are such that h < g
or h = g and all claims have been propagated, or h is closed.

When a node is closed and has no prior unclosed subgoals, it
is marked as Complete.

The Complete marking is propagated to any closed subgoals.

N. Shankar Datalog for ETB 18/21



Termination in our Example

−
b

p
(a

,Y
)

−
b

l(
a,

Z
)

−
w

p
(b

,Y
)

−
w

h
(b

,Z
)

w
p

(b
,a

)

b
p

(a
,Y

):
−

b
l(

a,
Y

)

a
b c−

b
l(

c,
Z

)

w
p

(b
,c

)

b
p

(a
,a

)

b
p

(a
,c

)

b
p

(c
,Y

):
−

b
l(

c,
 Z

),
w

p
(Z

,Y
)

b
p

(c
,Y

):
−

b
l(

c,
Y

)

w
p

(b
,b

)

w
p

(b
,Y

):
−

b
p

(a
,Y

)

w
p

(b
,Y

):
−

b
p

(c
,Y

)

w
p

(b
,a

)

w
p

(b
,c

)

w
h

(b
,c

)

w
p

(b
,Y

):
−

w
h

(b
,Z

),
b

p
(Z

,Y
)

w
p

(b
,Y

):
−

w
h

(b
, 

Y
)

b
p

(a
,Y

):
−

w
p

(b
,Y

)

b
p

(a
,Y

):
−

b
l(

a,
Z

),
w

p
(Z

,Y
)

w
h

(b
,a

)

b
p

(a
,b

)

−
b

p
(c

,Y
)

b
l(

a,
 b

)

N. Shankar Datalog for ETB 19/21



Conclusions

ETB is a distributed framework for tools, tool chains,
workflows, and evidence.

It is based on a simple architecture with

Datalog as a metalanguage
A well-defined denotational and operational semantics
Interpreted predicates for tool invocation, and uninterpreted
predicates for other claims
Data in JSON format
Datalog inference trees as proofs
Git as a medium for file identity and version control

The semantics and abstract machine has guided the
implementation

ETB can also be used for non-formal applications in
distributed computing.

N. Shankar Datalog for ETB 20/21



2018 Summer School on Formal Techniques

The Eighth Summer School on Formal Techniques will take
place during May 19 - May 25, 2018, at Menlo College,
Atherton, CA. See http://fm.csl.sri.com/SSFT18 for
details.

The lecturers at the school include:
1 Emina Torlak (U. Washington): Solver-Aided Programming
2 Nikhil Swami & Jonathan Protzenko (MSR): Programming

and Proving in F* and Low*
3 Andreas Abel (U. Göteborg): Introduction to Dependent Types

and Agda
4 Dirk Beyer (LMU Munich): Configurable Software Model

Checking — A Unifying View
5 Mooly Sagiv (Tel Aviv): Modularity for Decidability:

Implementing and Semi-Automatically Verifying Distributed
Systems

Invited speakers include Gordon Plotkin (Edinburgh), Nina
Narodytska (VMWare Research), Edward A. Lee (Berkeley).

N. Shankar Datalog for ETB 21/21

http://fm.csl.sri.com/SSFT18

