Semantics of Datalog for the Evidential Tool

Bus!

N. Shankar

Computer Science Laboratory
SRI International
Menlo Park, CA

May 8, 2018

! Joint work with Simon Cruanes (Ecole Polytechnique), Stijn Heymans (SRI AIC),
lan Mason and Sam Owre (SRI CSL).

@ An assurance case is “a documented body of evidence that
provides a convincing and valid argument that a specified set
of critical claims about a system'’s properties are adequately
Justified for a given application in a given environment.”
[Adelard]

@ From the FDA Draft Guidance document Total Product Life
Cycle: Infusion Pump - Premarket Notification [510(k)]
Submissions:

An assurance case is a formal method for demonstrating the validity
of a claim by providing a convincing argument together with
supporting evidence. It is a way to structure arguments to help
ensure that top-level claims are credible and supported. In an
assurance case, many arguments, with their supporting evidence,
may be grouped under one top- level claim. For a complex case,
there may be a complex web of arguments and sub-claims.

N. Shankar Datalog for ETB 2/21

Talk Outline

e Motivation and design of an Evidential Tool Bus (ETB) for
building assurance arguments.

@ Datalog as a metalanguage for defining workflows and
building arguments.

@ Peculiarities of ETB Datalog
@ Semantics of ETB Datalog (omitted in the talk)

@ Abstract machine for the tabled evaluation of ETB Datalog
queries in a distributed setting

@ Termination check for detecting fully evaluated goals

@ Conclusions

N. Shankar Datalog for ETB 3/21

ETB Overview

@ The Evidential Tool Bus (ETB) is a distributed tool
integration framework for constructing and maintaining claims
supported by arguments based on evidence.

@ ETB provides the infrastructure for

e Creating workflows that integrate multiple tools, e.g., static
analyzers, dynamic analyzers, satisfiability solvers, model
checkers, and theorem provers

e Generating claims based on these workflows

e Producing checkable evidence (e.g., files) supporting these
claims

e Maintaining the evidence against changes to the inputs

e ETB (https://github.com/SRI-CSL/ETB) is implemented
in Python 2.7 (but still somewhat buggy!).

@ This talk is preparation for a PVS formalization and code
generation for a new implementation (integrating Cyberlogic,
a logic of attestations).

N. Shankar Datalog for ETB 4/21

https://github.com/SRI-CSL/ETB

ETB Desiderata

@ ETB targets the production of claims supported by arguments
in which some of the sub-claims can be established by
external tools.

@ The three key design requirements for ETB are

Extensibility: e New claim forms and rules of argumentation
o New external tools (including human oracles)
o New workflows that are defined by scripts
e New clients and servers
Assurance: e Explication of tools, artifacts, rules, and

assumptions on which the argument depends
e Replay, revision, and rechecking of arguments

Semantic Neutrality: ETB makes no commitments to specific
tools, languages, or models
e ETB is infrastructure for building and checking arguments,
and can be used to implement specific assurance
methodologies.

N. Shankar Datalog for ETB 5/21

ETB Architecture

Clients Clients
Q Git Server Git Server

O
-O

N. Shankar Datalog for ETB 6/21

e Datalog is a fragment of Horn-clause logic programming first
introduced in the 1970s as a database query language.

@ It was realized that first-order logic could not represent
recursive queries like transitive closure:

ancestor(x, y) :- parent(x, y)
ancestor(x, y) :- parent(x, z), ancestor(z, y)

@ Much of the research focused on evaluation strategies for such
queries, e.g., semi-naive, magic sets, tabled evaluation.

@ In the last decade, Datalog has come to be seen as a versatile
tool for many applications: data integration, provenance,
declarative networking, synchronous programming, runtime
monitors, program analysis, among others.

N. Shankar Datalog for ETB 7/21

Datalog as a Metalanguage

Atoms are of the form p(a1,...,a,), where p is a predicate
and each a; is either a data object or a variable, e.g.,
o models(Model, Formula)
o cnf(Formula, CNFFormula)
Data objects can be JSON terms, file handles (with SHA-1
hash), tool handles (e.g., BDDs), session handles.
A predicate p can either be
e Interpreted by means of a tool invocation through wrappers,
e.g., yices.
e Uninterpreted, i.e., defined by a Datalog program that is
evaluated locally, e.g., allsat.
An uninterpreted predicate is defined by clauses of the form
p(ai,...,an) :—Q, where Q is a list of atoms whose free
variables contain those of p(ai, ..., an).
A query is an atom (possibly) with free variables, e.g.,
enf (formula, CNFFormula).

A claim is a ground atom that is supported by a proof.

N. Shankar Datalog for ETB 8/21

An Example ETB Workflow: AIISAT

The defined predicates sat and unsat invoke the interpreted
yices predicate on the given file F.

sat(F, M) :- yices(F, S, M),
equal(S, ’sat’).

unsat(F) :- yices(F, S, M),
equal(S, ’unsat’).

allsat(F, Answers) :- sat(F, M),
negateModel (F, M, NewF),
allsat (NewF, T),
cons(M, T, Answers).
allsat(F, Answers) :- unsat(F),
nil (Answers) .

Though allsat calls sat and unsat, the yices wrapper is only
executed once on the file F since the resulting claim is tabled.

N. Shankar Datalog for ETB 9/21

A Variant: AIISAT with a Yices Session

allsat(F, Answers) :- yicesStart(Session0),
yicesIncludeFile(SessionO, F, Sessionl),
allsat_enum(Sessionl, Answers).

allsat_enum(Session, Answers) :-
yicesCheck(Session, Sessionl, Result),
allsat_iter(Sessionl, Result, Answers).

allsat_iter(Session, Result, Answers) :-
equal (Result, ’sat’),
yicesModel(Session, Model),
yicesAssertNegation(Session, Model, Sessionl),
allsat_enum(Sessionl, Answersl),
cons(Model, Answersl, Answers).

allsat_iter(Session, Result, Answers) :-
equal (Result, ’unsat’),
yicesClose(Session),
nil(Answers).

N. Shankar Datalog for ETB 10/21

ETB Datalog versus Datalog

Datalog as a database query language has intensional and
extensional predicates — ETB has uninterpreted and
interpreted predicates.

Interpreted predicates are similar to built-ins (which evaluate
ground atoms), but more general.

ETB only admits top-down left-to-right evaluation — no
bottom-up evaluation.

In ETB, Datalog is the metalanguage — sparse data, but
elaborate workflows.

In Datalog, the Herbrand universe is bounded, but in ETB
Datalog, it is unbounded.
ETB Datalog evaluation is distributed — uninterpreted

predicates are evaluated locally, and interpreted predicates
might be evaluated remotely.

No (stratified) negation — we only establish positive claims.

N. Shankar Datalog for ETB 11/21

What is an Interpreted Predicate?

@ Datalog has been extended with built-in predicates, but these
are usually evaluated when all arguments are grounded, e.g.,

< (x,y).
@ An interpreted predicate p(ai, ..., ap) is evaluated by a
wrapper.
@ The evaluation of a predicate p(ai, ..., a,) generates clauses
(lemmata) of the form
p(bi, ..., b1n) 1= @
p(bm17 ceey bmn) L= Qm
@ For example, the evaluation of veryComposite(8,3), can
generate
veryComposite(8,3) : — composite(8),
composite(9),
composite(10).

N. Shankar Datalog for ETB 12/21

The ETB Datalog Abstract Inference System

@ We can define a sound/complete inference system for query
processing.

@ A logical state consists of a pair G; J with a set of
(normalized) goals G and a set of normalized clauses J.

@ Each goal in G is of the form —A and each clause in J is of
the form [B : — Q)].

e Initially, J is empty and G is the singleton {—A}.
@ The inference system consists of inference rules that transform
the logical state.

N. Shankar Datalog for ETB 13/21

The ETB Datalog Inference System

e Backchain:
J
G;[B:— Ay,..., A J
G,-A1;[B:— A1,..., A,

@ Resolve: c
——
-A, G J
o=mgu(A,B),[B:— Q)R
G o(B - Q)).J gu(A, B), [] €
o External:
-A, G J
— external atom A
G JUE(A)

o Propagate:
G;[B:— A QA J

G,o([B:— Q)),J

o(A) = A

N. Shankar Datalog for ETB 14/21

ETB Abstract Machine

@ The abstract inference system simplifies the correctness
argument, but it can be inefficient without a strategy and
indexing.

@ We define an abstract machine for tabled evaluation whose
state consists of Goals and Clauses.

Goals Clauses

Resolve/External

<>

N. Shankar Datalog for ETB 15/21

A Datalog Example

G black(a, b)

G white(b, c)

G white(b, a)

Cy | blackpath(X,Y) :— black(X,Y)

Gs b/ackpath(X, Y) :— black(X,Z),whitepath(Z,Y)
Ce | whitepath(X,Y) :— white(X,Y)

C; | whitepath(X,Y) :— white(X,Z), blackpath(Z,Y)

N. Shankar Datalog for ETB 16/21

c
.9
)
L
2
—
()
)
Q2
o
S
L]
X
L

(e'q)dm

. (
((o'q)dm
(
(

(e‘e)dq

(o'v)dq

(X2)dm(Z .331@5&&
(X9)19-(4°2)dq
(Q‘q)dm
(X®)dg—:(X‘q)dm
(X0)dg—:(x‘q)dm
(e'q)dm

('q)dm
(v'qun |
('qyn)
(X2)4q"(Z' Pum—:(x‘q)dm
(X ‘Qum—:(X‘q)dm
(A'dn—:(x‘e)dq
(qe)dq
(@ o))
(X'Z2)dm(Z'e)Iq—:(X®)dq
(X ®)I9-:(X‘®)dq

17/21

Datalog for ETB

N. Shankar

Terminating Evaluation

@ How do we know when a goal or subgoal has been fully
evaluated?

@ Evaluation state is shared by a number of queries.

@ We add inference rules for termination checking that can be
interleaved with normal evaluation.

@ These rules track the dependencies between goals counting
claims propagated from subgoals to goals.

@ The algorithm exploits the order between goals to close off
goals g in which all transitive subgoals h are such that h < g
or h = g and all claims have been propagated, or h is closed.

@ When a node is closed and has no prior unclosed subgoals, it
is marked as Complete.

@ The Complete marking is propagated to any closed subgoals.

N. Shankar Datalog for ETB 18/21

(Fa)dm

(')
(e‘e)dq
(>0)dq
< (A2)dm(Z D1a-(x"2)dq)

(X)19-:(&2)da)
((@'Q)dm
AN,uzpl) (x‘®)dq—:(x‘q)dm
A 9)dg—:(A‘q)dm
Cﬂ JELI V4 \ (X9)dg-:(X‘q)

‘ ZQun—p ﬁ e

Cw @E\sl @,@EBW

(Z®)1q— ' Ao,pvf&

4) El AZ2)49'(Z'Qum—:(X‘q)dm
(X ‘Qum—:(X‘q)dm

(X‘qQ)dm—:(x‘e)dq

((qw)dq

@)

(XZ)dm‘(Z'e)[q—:(X®)dq

(X'®)9-:(X‘®)dq

Vo T s

(@q)dn

o
o
£
(L]
X

Ll
| -
>
(@)

£
(=

ke

i)
(g}

k=
£
o

T

19/21

Datalog for ETB

N. Shankar

Conclusions

@ ETB is a distributed framework for tools, tool chains,
workflows, and evidence.
@ It is based on a simple architecture with

e Datalog as a metalanguage

e A well-defined denotational and operational semantics

e Interpreted predicates for tool invocation, and uninterpreted
predicates for other claims

e Data in JSON format

e Datalog inference trees as proofs

e Git as a medium for file identity and version control

@ The semantics and abstract machine has guided the
implementation

@ ETB can also be used for non-formal applications in
distributed computing.

N. Shankar Datalog for ETB 20/21

2018 Summer School on Formal Techniques

@ The Eighth Summer School on Formal Techniques will take
place during May 19 - May 25, 2018, at Menlo College,
Atherton, CA. See http://fm.csl.sri.com/SSFT18 for
details.

@ The lecturers at the school include:

© Emina Torlak (U. Washington): Solver-Aided Programming

@ Nikhil Swami & Jonathan Protzenko (MSR): Programming
and Proving in F* and Low*

© Andreas Abel (U. Goteborg): Introduction to Dependent Types
and Agda

@ Dirk Beyer (LMU Munich): Configurable Software Model
Checking — A Unifying View

© Mooly Sagiv (Tel Aviv): Modularity for Decidability:
Implementing and Semi-Automatically Verifying Distributed
Systems

@ Invited speakers include Gordon Plotkin (Edinburgh), Nina
Narodytska (VMWare Research), Edward A. Lee (Berkeley).

N. Shankar Datalog for ETB 21/21

http://fm.csl.sri.com/SSFT18

